Wavelets based on two element orthogonal polynomials 二元正交多項(xiàng)式小波
Fitting of an orthogonal polynomial of arbitrary random nodes 任意散亂節(jié)點(diǎn)的正交多項(xiàng)式擬合
The invariant factors of orthogonal polynomial for two variables and numerical integration formulas 二元直交多項(xiàng)式的不變因子與數(shù)值積分公式
Implicit iterative methods based on some orthogonal polynomials for ill - posed operator equations 基于正交多項(xiàng)式的解不適定算子方程的隱式迭代法
Orthogonal polynomial regression design for interference elimination in atomic absorption spectrometry 消除原子吸收光譜分析中干擾效應(yīng)的正交多項(xiàng)式回歸設(shè)計(jì)
In the classical orthogonal polynomial theory . for the simplication of statement , only the gaussian unitary ensemble case is considered 文中,為敘述上簡(jiǎn)單起見(jiàn),只考慮gauss酉系綜的情形。
A new method , suitable for identification of distributed loading on continuous model with orthogonal polynomials by using limited measured data is introduced 摘要用正交多項(xiàng)式擬合的方法對(duì)連續(xù)系統(tǒng)的分布動(dòng)態(tài)載荷進(jìn)行識(shí)別的技術(shù),為用有限的測(cè)量信息進(jìn)行連續(xù)系統(tǒng)分布載荷的識(shí)別提供了可行的方法。
Method based on component analysis ( peak value pick - up ) and global orthogonal polynomial subsection fitting to obtain system damping ratio , natural frequency and modal shapes is especially described 著重描述了分量分析法(峰值拾取法)和整體正交多項(xiàng)式分段擬合法提取系統(tǒng)固有頻率及其振型的方法。
Only sufficient number of measured points is needed to satisfy the identification precision of to identify the ratio of the orthogonal polynomials , and there is no special limit on th positions of measuered points 該方法只須獲取足夠的測(cè)量點(diǎn)的響應(yīng)來(lái)識(shí)別分布載荷正交多項(xiàng)式的系數(shù),滿足識(shí)別的精度要求,同時(shí)對(duì)測(cè)量點(diǎn)的位置無(wú)特殊限制。
By orthogonal polynomial approximation method , we first reduce the random system into its deterministic equivalent one , so the response problem of a random system can be transformed into that of a deterministic system 有關(guān)上述gegenbauer多項(xiàng)式方法在隨機(jī)振動(dòng)問(wèn)題中的應(yīng)用,現(xiàn)有文獻(xiàn)中尚未見(jiàn)報(bào)道。上述三種方法都可以用于求解隨機(jī)結(jié)構(gòu)的演變隨機(jī)均方響應(yīng)問(wèn)題。